Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expression and molecular evolution of two DREB1 genes in black poplar (Populus nigra).

Identifieur interne : 002235 ( Main/Exploration ); précédent : 002234; suivant : 002236

Expression and molecular evolution of two DREB1 genes in black poplar (Populus nigra).

Auteurs : Yanguang Chu [République populaire de Chine] ; Qinjun Huang [République populaire de Chine] ; Bingyu Zhang [République populaire de Chine] ; Changjun Ding [République populaire de Chine] ; Xiaohua Su [République populaire de Chine]

Source :

RBID : pubmed:24887081

Descripteurs français

English descriptors

Abstract

Environmental stresses such as low temperature, drought, and high salinity significantly affect plant growth and yield. As selective forces, these adverse factors play essential roles in shaping phenotypic variation in plant populations. Black poplar (Populus nigra) is an economically and ecologically important forest tree species with widely distributed populations and is thus suitable for experiments detecting evolutionary footprints left by stress. Here, we performed expression and evolutionary analysis of two duplicated DREB A1-subgroup (DREB1) genes, PnDREB68 and PnDREB69, encoding transcription factors that are involved in stress responses. The two genes showed partially overlapping but distinct expression patterns in response to stresses. These genes were strongly and rapidly induced by cold stress in leaves, stems, and roots. In leaf tissue, dehydration stress induced the expression of PnDREB68 but not PnDREB69. PnDREB69 displayed more rapid responses and longer expression durations than PnDREB68 under salt and ABA stress, respectively. Based on single nucleotide polymorphism (SNP) analysis, we found significant population genetic differentiation, with a greater FST value (0.09189) for PnDREB69 than for PnDREB68 (0.07743). Nucleotide diversity analysis revealed a two-fold higher πT for PnDREB68 than for PnDREB69 (0.00563 vs. 0.00243), reflecting strong purifying selection acting on the former. The results suggest that positive selection acted on PnDREB69, as evidenced by neutral testing using Tajima's D statistic. The distinct selective forces to which each of the genes was subjected may be associated with expression divergence. Linkage disequilibrium (LD) was low for the sequenced region, with a higher level for PnDREB68 than for PnDREB69. Additionally, analysis of the relationship among carbon isotope ratios, SNP classes and gene expression, together with motif and domain analysis, suggested that 14 polymorphisms within the two genes may be candidates for an association study of important traits such as water use efficiency/drought tolerance in black poplar.

DOI: 10.1371/journal.pone.0098334
PubMed: 24887081
PubMed Central: PMC4041773


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expression and molecular evolution of two DREB1 genes in black poplar (Populus nigra).</title>
<author>
<name sortKey="Chu, Yanguang" sort="Chu, Yanguang" uniqKey="Chu Y" first="Yanguang" last="Chu">Yanguang Chu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Qinjun" sort="Huang, Qinjun" uniqKey="Huang Q" first="Qinjun" last="Huang">Qinjun Huang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Bingyu" sort="Zhang, Bingyu" uniqKey="Zhang B" first="Bingyu" last="Zhang">Bingyu Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ding, Changjun" sort="Ding, Changjun" uniqKey="Ding C" first="Changjun" last="Ding">Changjun Ding</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Su, Xiaohua" sort="Su, Xiaohua" uniqKey="Su X" first="Xiaohua" last="Su">Xiaohua Su</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24887081</idno>
<idno type="pmid">24887081</idno>
<idno type="doi">10.1371/journal.pone.0098334</idno>
<idno type="pmc">PMC4041773</idno>
<idno type="wicri:Area/Main/Corpus">002161</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002161</idno>
<idno type="wicri:Area/Main/Curation">002161</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002161</idno>
<idno type="wicri:Area/Main/Exploration">002161</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expression and molecular evolution of two DREB1 genes in black poplar (Populus nigra).</title>
<author>
<name sortKey="Chu, Yanguang" sort="Chu, Yanguang" uniqKey="Chu Y" first="Yanguang" last="Chu">Yanguang Chu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Qinjun" sort="Huang, Qinjun" uniqKey="Huang Q" first="Qinjun" last="Huang">Qinjun Huang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Bingyu" sort="Zhang, Bingyu" uniqKey="Zhang B" first="Bingyu" last="Zhang">Bingyu Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ding, Changjun" sort="Ding, Changjun" uniqKey="Ding C" first="Changjun" last="Ding">Changjun Ding</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Su, Xiaohua" sort="Su, Xiaohua" uniqKey="Su X" first="Xiaohua" last="Su">Xiaohua Su</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Carbon Isotopes (MeSH)</term>
<term>DNA, Complementary (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Linkage Disequilibrium (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Populus (classification)</term>
<term>Populus (genetics)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Déséquilibre de liaison (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Isotopes du carbone (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Populus (classification)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Complementary</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbon Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Linkage Disequilibrium</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Déséquilibre de liaison</term>
<term>Gènes de plante</term>
<term>Isotopes du carbone</term>
<term>Phylogenèse</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Environmental stresses such as low temperature, drought, and high salinity significantly affect plant growth and yield. As selective forces, these adverse factors play essential roles in shaping phenotypic variation in plant populations. Black poplar (Populus nigra) is an economically and ecologically important forest tree species with widely distributed populations and is thus suitable for experiments detecting evolutionary footprints left by stress. Here, we performed expression and evolutionary analysis of two duplicated DREB A1-subgroup (DREB1) genes, PnDREB68 and PnDREB69, encoding transcription factors that are involved in stress responses. The two genes showed partially overlapping but distinct expression patterns in response to stresses. These genes were strongly and rapidly induced by cold stress in leaves, stems, and roots. In leaf tissue, dehydration stress induced the expression of PnDREB68 but not PnDREB69. PnDREB69 displayed more rapid responses and longer expression durations than PnDREB68 under salt and ABA stress, respectively. Based on single nucleotide polymorphism (SNP) analysis, we found significant population genetic differentiation, with a greater FST value (0.09189) for PnDREB69 than for PnDREB68 (0.07743). Nucleotide diversity analysis revealed a two-fold higher πT for PnDREB68 than for PnDREB69 (0.00563 vs. 0.00243), reflecting strong purifying selection acting on the former. The results suggest that positive selection acted on PnDREB69, as evidenced by neutral testing using Tajima's D statistic. The distinct selective forces to which each of the genes was subjected may be associated with expression divergence. Linkage disequilibrium (LD) was low for the sequenced region, with a higher level for PnDREB68 than for PnDREB69. Additionally, analysis of the relationship among carbon isotope ratios, SNP classes and gene expression, together with motif and domain analysis, suggested that 14 polymorphisms within the two genes may be candidates for an association study of important traits such as water use efficiency/drought tolerance in black poplar. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24887081</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Expression and molecular evolution of two DREB1 genes in black poplar (Populus nigra).</ArticleTitle>
<Pagination>
<MedlinePgn>e98334</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0098334</ELocationID>
<Abstract>
<AbstractText>Environmental stresses such as low temperature, drought, and high salinity significantly affect plant growth and yield. As selective forces, these adverse factors play essential roles in shaping phenotypic variation in plant populations. Black poplar (Populus nigra) is an economically and ecologically important forest tree species with widely distributed populations and is thus suitable for experiments detecting evolutionary footprints left by stress. Here, we performed expression and evolutionary analysis of two duplicated DREB A1-subgroup (DREB1) genes, PnDREB68 and PnDREB69, encoding transcription factors that are involved in stress responses. The two genes showed partially overlapping but distinct expression patterns in response to stresses. These genes were strongly and rapidly induced by cold stress in leaves, stems, and roots. In leaf tissue, dehydration stress induced the expression of PnDREB68 but not PnDREB69. PnDREB69 displayed more rapid responses and longer expression durations than PnDREB68 under salt and ABA stress, respectively. Based on single nucleotide polymorphism (SNP) analysis, we found significant population genetic differentiation, with a greater FST value (0.09189) for PnDREB69 than for PnDREB68 (0.07743). Nucleotide diversity analysis revealed a two-fold higher πT for PnDREB68 than for PnDREB69 (0.00563 vs. 0.00243), reflecting strong purifying selection acting on the former. The results suggest that positive selection acted on PnDREB69, as evidenced by neutral testing using Tajima's D statistic. The distinct selective forces to which each of the genes was subjected may be associated with expression divergence. Linkage disequilibrium (LD) was low for the sequenced region, with a higher level for PnDREB68 than for PnDREB69. Additionally, analysis of the relationship among carbon isotope ratios, SNP classes and gene expression, together with motif and domain analysis, suggested that 14 polymorphisms within the two genes may be candidates for an association study of important traits such as water use efficiency/drought tolerance in black poplar. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chu</LastName>
<ForeName>Yanguang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Qinjun</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Bingyu</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Changjun</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Xiaohua</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015810" MajorTopicYN="N">Linkage Disequilibrium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24887081</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0098334</ArticleId>
<ArticleId IdType="pii">PONE-D-13-42289</ArticleId>
<ArticleId IdType="pmc">PMC4041773</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1989 Nov;123(3):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2513255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 1975 Apr;7(2):256-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1145509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Mar;133(3):693-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8454210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Nov;16(4):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9881163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11479-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11562485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2011 Oct;26(10):514-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21763030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(3):763-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19228296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Aug;33(8):866-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23956128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Dec;29(12):3641-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22787283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Nov;55(407):2447-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15475373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18990244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Jan 25;290(3):998-1009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11798174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Oct 1;23(19):2633-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2009 Nov;137(2):141-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19484494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>OMICS. 2011 Nov;15(11):739-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22122668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jul;29(7):1259-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Dec;21(12):3749-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Sep;180(1):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Aug;155(4):2011-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10924493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1992 Jan;9(1):138-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1552836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Sep 15;166(14):1544-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19464753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1035-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9023378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">291943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011;11:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21219606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Oct;12(10):444-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jun;62(10):3387-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21414959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(12):e53116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23300875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 May;233(5):971-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21274560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):526-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20122131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jun 1;25(11):1451-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19346325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Oct;62(14):4731-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21737415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e47275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23077584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):1099-1111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Sep;88(1):213-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 May;15(5):538-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9580982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Jul 11;371(4):702-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18457662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Sep 7;337(6099):1190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Jul 4;371(3):468-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18442469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011;11:146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22032693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(5):720-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):639-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 1992 Nov;140(5):725-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19426041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(9):2713-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1991 Apr;7(2):203-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2059845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2011 Jan;9(1):50-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20492548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):945-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Nov;56(4):613-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18643985</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chu, Yanguang" sort="Chu, Yanguang" uniqKey="Chu Y" first="Yanguang" last="Chu">Yanguang Chu</name>
</noRegion>
<name sortKey="Ding, Changjun" sort="Ding, Changjun" uniqKey="Ding C" first="Changjun" last="Ding">Changjun Ding</name>
<name sortKey="Huang, Qinjun" sort="Huang, Qinjun" uniqKey="Huang Q" first="Qinjun" last="Huang">Qinjun Huang</name>
<name sortKey="Su, Xiaohua" sort="Su, Xiaohua" uniqKey="Su X" first="Xiaohua" last="Su">Xiaohua Su</name>
<name sortKey="Zhang, Bingyu" sort="Zhang, Bingyu" uniqKey="Zhang B" first="Bingyu" last="Zhang">Bingyu Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002235 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002235 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24887081
   |texte=   Expression and molecular evolution of two DREB1 genes in black poplar (Populus nigra).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24887081" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020